Departament de Física

Sergio González Horcas

Lecturer
Campus Terrassa (UPC), Edifici Gaia, Despatx 175
Rambla Sant Nebridi, 22
08222 Terrassa

E-Mail: sergio.gonzalez-horcasupc.edu
Web del grup de recerca: https://futur.upc.edu/176438
Web personal: https://futur.upc.edu/SergioGonzalezHorcas

Horcas focuses on developing and applying numerical methods in various engineering fields. This includes pre- and post-processing, as well as domains such as fluid dynamics, structural dynamics, and fluid-structure interaction. He is particularly interested in the computational study of wind turbines and aircraft. Horcas also aims to explore complex physics phenomena, such as vortex-induced vibrations and flow control mechanisms. The main contributions of Horcas to the state of the art include the development of novel mesh deformation algorithms, the adaptation of harmonic solvers to the study of aeroelasticity, and the characterization of instabilities in complex industrial configurations. Currently, he is also exploring the use of metamaterials to mitigate adverse coupled phenomena.


Short CV


2025 - present: Assistant Professor at Universitat Politècnica de Catalunya (UPC)
2024 - 2025: Beatriu de Pinós postdoctoral fellow at Universitat Politècnica de Catalunya (UPC)
2022 - 2024: Researcher at International Center for Numerical Methods in Engineering (CIMNE)
2022 - 2024: Adjunct Professor at UPC
2017 - 2022: Researcher at Danish Technical University (DTU)
2013 - 2016: PhD in Engineering Sciences, University of Mons (UMONS) and Cadence Design Systems
2010 - 2013: R&D Engineer at Siemens PLM Software
2008 - 2010: MSc in Aerospace Mechanics and Avionics, Institut Supérieur de l´Aéronautique et de l´Espace (ISAE-SUPAERO)
2007 - 2009: R&D Engineer at CIMNE
2004 - 2007: BSc in Aerospace Systems Engineering, UPC


1- Development of a multi-fidelity optimisation strategy based on hybrid methods
Porta, A.; Gonzalez, S.; Pons-Prats, J.; Bugeda, G.
Structural and multidisciplinary optimization 67, article 163 (2024)

2- Grand challenges in the design, manufacture, and operation of future wind turbine systems
Veers, P.; Botasso, C.; Lance, M.; Naughton, J.; Pao, L.; Gonzalez, S.
Wind energy science 8, 1071-1131 (2023)

3- Comparison of aerodynamic models for horizontal axis wind turbine blades accounting for curved tip shapes
Gonzalez, S.; Ramos-Garcia, N.; Ang, L.; Pirrung, G.; Barlas, T.
Wind energy 26, 5-22 (2023)

4- A computationally efficient engineering aerodynamic model for swept wind turbine blades
Li, A.; Pirrung, G.; Gaunaa, M.; Madsen, H.; Gonzalez, S.
Wind energy science 7, 129-160 (2022)

5- A computationally efficient engineering aerodynamic model for non-planar wind turbine rotors
Li, A.; Gaunaa, M.; Pirrung, G.; Gonzalez, S.
Wind energy science 7, 75-104 (2022)

6- Investigation of the floating IEA Wind 15 MW RWT using vortex methods Part I: Flow regimes and wake recovery
Ramos-Garcia, N.; Kontos, S.; Pegalajar-Jurado, A.; Gonzalez, S.; Bredmose, H.
Wind energy 25, 468-504 (2022)

7- Vibrations of wind turbine blades in standstill: Mapping the influence of the inflow angles
Gonzalez, S.; Sorensen, N.; Zahle, F.; Pirrung, G.; Barlas, T.
Physics of fluids 34, 5, article 054105 (2022)

8- How should the lift and drag forces be calculated from 2-D airfoil data for dihedral or coned wind turbine blades?
Li, A.; Gaunaa, M.; Pirrung, G.; Meyer, A.; Gonzalez, S.
Wind energy science 7, 1341-1365 (2022)

9- CFD-based curved tip shape design for wind turbine blades
Madsen, M.; Zahle, F.; Gonzalez, S.; Barlas, T.; Sorensen, N.
Wind energy science 7, 1471-1501 (2022)

10- Investigation of the floating IEA wind 15-MW RWT using vortex methods Part II: Wake impact on downstream turbines under turbulent inflow
Ramos-Garcia, N.; Gonzalez, S.; Pegalajar-Jurado, A.; Kontos, S.; Bredmose, H.
Wind energy 25, 1434-1463 (2022)

11- Influence of the installation of a trailing edge flap on the vortex induced vibrations of a wind turbine blade
Gonzalez, S.; Madsen, M.; Sorensen, N.; Zahle, F.; Barlas, T.
Journal of wind engineering and industrial aerodynamics 229, article 105118 (2022)

12- Atmospheric rotating rig testing of a swept blade tip and comparison with multi-fidelity aeroelastic simulations
Barlas, T.; Pirrung, G.; Ramos-Garcia, N.; Gonzalez, S.; Li, A.; Madsen, H.
Wind energy science 7, 1957-1973 (2022)

13- Multiple limit cycle amplitudes in high-fidelity predictions of standstill wind turbine blade vibrations
Grinderslev, C.; Sørensen, N.; Pirrung, G.; Gonzalez, S.
Wind energy science 7, 2201-2213 (2022)

14- Fluid–structure interaction simulations of a wind turbine rotor in complex flows, validated through field experiments
Grinderslev, C.; Gonzalez, S.; Sorensen, N.
Wind energy 24, 1426-1442 (2021)

15- Wind tunnel testing of a swept tip shape and comparison with multi-fidelity aerodynamic simulations
Barlas, T.; Pirrung, G.; Ramos-Garcia, N.; Gonzalez, S.; Mikkelsen, R.; Olsen, A.; Gaunaa, M.
Wind energy science 6, 1311-1324 (2021)

16- Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Grinderslev, C.; Sorensen, N.; Gonzalez, S.; Troldborg, N.; Zahle, F.
Wind energy science 6, 627-643 (2021)

17- Aero-hydro-servo-elastic coupling of a multi-body finite-element solver and a multi-fidelity vortex method
Ramos-Garcia, N.; Sessarego, M.; Gonzalez, S.
Wind energy 24, 481-501 (2021)

18- Surrogate-based aeroelastic design optimization of tip extensions on a modern 10MW wind turbine
Barlas, T.; Ramos-Garcia, N.; Pirrung, G.; Gonzalez, S.
Wind energy science 6, 491-504 (2021)

19- Vortex induced vibrations of wind turbine blades: Influence of the tip geometry
Gonzalez, S.; Barlas, T.; Zahle, F.; Sorensen, N.
Physics of fluids 32, 6, article 065104 (2020)

20- Investigations of aerodynamic drag forces during structural blade testing using high-fidelity fluid–structure interaction
Grinderslev, C.; Belloni, F.; Gonzalez, S.; Sorensen, N.
Wind energy science 5, 543-560 (2020)

21- Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow
Sessarego, M.; Feng, J.; Ramos-Garcia, N.; Gonzalez, S.
Renewable energy 146, 1524-1535 (2020)

22- Extension of the Non-Linear Harmonic method for the study of the dynamic aeroelasticity of horizontal axis wind turbines
Gonzalez, S.; Debrabandere, F.; Tartinville, B.; Hirsch, C.; Coussement, G.
Journal of fluids and structures 73, 100-124 (2017)

23- Rotor-tower interactions of DTU 10MW reference wind turbine with a non-linear harmonic method
Gonzalez, S.; Debrabandere, F.; Tartinville, B.; Hirsch, C.; Coussement, G.
Wind energy 20, 619-636 (2017)